James Webb Uzay Teleskobu’nun gözünden Uranüs’ün halkaları

James Webb Uzay Teleskobu, Neptün‘den sonra Güneş Sisteminin diğer buz devi Uranüs ve uydularının çarpıcı bir görüntüsünü yakaladı. Yeni görüntüde, Uranüs’ün halkaları, gezegenin atmosferindeki parlak özellikler ve bazı uyduları var. Webb’in elde ettiği detaylı veriler en zayıf tozlu halkaları da ortaya çıkardı.

Uranüs’ün halkaları ve atmosferine dair detaylar.

Uranüs’ün halkaları

Uranüs’ün halka yapısı 10 Mart 1977’de James L. Elliot, Edward W. Dunham ve Jessica Mink tarafından keşfedildi. Dünya’dan yapılan gözlemler dışında ilk olarak Voyager 2 uzay sondası gezegeni yakından görüntüledi. Sonrasında Hubble uzay teleskobu sayesinde en dıştaki iki halka keşfedildi.

Uranüs’ün halkalarını görüntülemek zor, çünkü ışığın sadece yüzde 2’sini yansıtıyorlar. Halkaların hammaddesi organik madde içeren su buzu. Büyük kısmı ince tozdan oluşuyor, daha büyük cisimlerin çapı 0.2-20 metre arasında değişiyor. Toplam 13 halkadan en içteki 38 bin km, en dıştaki ise 98 bin km yarı çaplı.

Uzay teleskobu bu görüntüyü yalnızca 12 dakikalık bir pozlamayla yakaladı. Webb’in ortaya çıkaracakları için buz dağının (ya da gezegeninin) sadece görünen kısmı diyebiliriz.

Uranüs’ün uyduları

JWST’nin yakaladığı görüntüde Uranüs’ün halkaları dışında bazı uyduları da görülüyor. Gezegenin bilinen 27 uydusu var. Bunların çoğu görülemeyecek kadar küçük ve soluktur, ancak bu geniş açılı görüntüde en parlak 6 tanesi etiketlenmiş. Burada görülen diğer parlak nesneler arka plandaki gökadalar.

Webb’in NIRCam cihazıyla Uranüs sisteminin bu daha geniş görünümü, Uranüs gezegeninin yanı sıra bilinen 27 uydusundan altısını (çoğu bu kısa pozlamada görülemeyecek kadar küçük ve soluktur) gösteriyor. Birçok gökada da dahil olmak üzere bir avuç arka plan nesnesi de görülüyor. [Resim açıklaması: Uranüs gezegeni, merkezin hemen solunda siyah bir arka plan üzerindedir. Açık mavi renktedir ve sağ tarafında büyük, beyaz bir parçanın yanı sıra iki parlak nokta ve onu çevreleyen dikey olarak yönlendirilmiş iç içe halkalardan oluşan bir sistem gösterir.]

Yedinci gezegen olan Uranüs’ün bazı benzersiz özellikleri var. Kendi tarafında, yörünge düzleminden kabaca 90 derecelik bir açıyla döner. Bu bizim alışık olmadığımız aşırı mevsimlere neden olur. Çünkü gezegenin kutupları yıllarca (Uranüs’ün Güneş’in etrafında dönüşü 84 yıl sürüyor) sürekli güneş ışığını ve ardından aynı sürede tam karanlığı yaşar.

Burada görülen kuzey kutbu için artık baharın sonları; Uranüs’ün kuzeyine yaz 2028’de gelecek. Buna karşılık, Voyager 2 Uranüs’ü ziyaret ettiğinde güney kutbu yaz mevsimindeydi. Güney kutbu artık gezegenin ‘karanlık tarafında’, görüş alanı dışında ve uzayın karanlığına bakıyor.

kaynaklar:

//esawebb.org/videos/weic2310a/
//www.nasa.gov/feature/goddard/2023/nasa-s-webb-scores-another-ringed-world-with-new-image-of-uranus

James Webb Uzay Teleskobu gözünden gezegenler

James Webb Uzay Teleskobu (JWST) kızıl ötesi alanda gözlem yapmak için tasarlandı. İnsan gözünün algıladığı görünür dalga boyları, elektromanyetik tayfın son derece sınırlı bir alanını oluşturur. Farklı dalga boyları ile yapılan gözlemler gökcisimlerine dair pek çok detayı ortaya çıkarabilir. JWST’nin gözlemlediği kızıl ötesi alan da astronomi açısından önemli veriler sağlamakta.

Teleskobun sahip olduğu kızılötesi gözlem kabiliyeti, milyarlarca ışık yılı öteye bakılmasını gerektiren, evrende oluşan ilk gökadaları inceleyebilmeyi sağlıyor. Elbette teleskobun bu yeteneği daha yakın bölgeleri incelemek için de kullanılabilmekte.

NASA araştırmacıları teleskobu ilk olarak Güneş Sistemi içindeki gezegenlere çevirdiler. Bu sayede gezegenleri kızılötesi bölgede hiç olmadığı kadar ayrıntılı görebilme şansına eriştik.

Jüpiter

James Webb’in yakın-kızılötesi dalga boyundaki gözlemleri, astronomlara yüzeyi devasa fırtınalarla kaplı Jüpiter’in iç yapısına dair ip uçları sağlayacak.

Jüpiter’in aşağıdaki iki görüntüsü, James Webb’in sahip olduğu üç özel kızılötesi filtreden biri olan Yakın Kızılötesi Kamerası (NIRCam) tarafından alınmıştır. Bu tarz görsellerde, insan gözünün algılayamadığı kızılötesi ışığı görünür spektruma yerleştiriyorlar. Genel olarak, en uzun dalga boyları daha kırmızı görünür ve en kısa dalga boyları daha mavi olarak gösterilir. Gözlemlerle elde edilen verilen verilerin işlenmesinde bilim insanlarının yanında, çok sayıda bilimci vatandaş da yer alıyor. Bu görsellerde de onlardan biri olan Judy Schmidt’in emeği var.

Neptün

Neptün’ü ilk ve tek ziyaret eden uzayaracı, 1989 yazında gezegenin yakınından geçen Voyager 2’dir. James Webb Uzay Teleskobu gezegenin halkalarını 30 yıldan uzun süre sonra en detaylı haliyle bize gösterdi.

kaynak:
Neptün: //www.nasa.gov/feature/goddard/2022/new-webb-image-captures-clearest-view-of-neptune-s-rings-in-decades
Jüpiter: //blogs.nasa.gov/webb/2022/08/22/webbs-jupiter-images-showcase-auroras-hazes/

James Webb’in yörüngesi

James Webb’in yörüngesi Güneş-Dünya L2 noktasında bulunuyor. NASA mühendisleri James Webb Uzay Teleskobu’nun 24 Ocak Pazartesi günü, Dünya’dan yaklaşık 1.5 milyon km uzaktaki, Güneş-Dünya Lagrange 2 noktası (veya kısaca “L2”) olarak adlandırılan yörüngeye yerleştirecek olan son düzeltme ateşlemesinin talimatını vermeyi planlıyorlar.

Lagrange noktaları, uzayda oraya gönderilen nesnelerin yerlerinde kalma eğiliminde oldukları konumlardır ve temelde “üç cisim problemi” denen şeyin matematiksel çözümleridir. İki büyük kütlenin yerçekim kuvveti, küçük bir nesnenin onlarla birlikte hareket etmesi için gereken merkezcil kuvvete tam olarak eşittir. Uzaydaki bu noktalar, pozisyonda kalmak için gereken yakıt tüketimini azaltmak için uzay aracı tarafından kullanılabilir. Uzaydaki bu pozisyonlar Lagrange noktaları olarak isimlendiriliyor.

Lagrange noktaları
Güneş-Dünya Lagrange noktaları ve James Webb’in konumu

Lagrange noktaları L1’den L5’e kadar etiketlenir ve onları oluşturan iki gökcisminin (ilk önce büyük olan) adlarından önce gelir.

Tüm Lagrange noktaları yerçekimi denge noktaları olsa da, bunların hepsi tamamen kararlı değildir. Gökcisimlerinin kütleleriyle uzay-zamanda oluşturduğu şekillerle ifade edecek olursak: L1, L2 ve L3 biraz daha yüksek iki tepe arasındaki bir tepenin ortasındaki bir nokta gibi, eyer şeklinde yerçekimi gradyanlarına sahip “meta-kararlı” konumlardır. L4 ve L5 ise her konumun uzun, yüksek bir sırtın veya tepenin ortasındaki sığ bir çöküntü veya çanak gibi olması bakımından kararlıdır.

Lagrange noktalarının uzay-zaman üzerindeki konumları. Konumlar ölçeksiz, uzay-zamandaki bükülmeler abartılıdır.

Öyleyse neden Webb’i Güneş-Dünya L2’nin yörüngesine gönderdiler? Çünkü kızılötesi bir gözlemevi için burası çok ideal bir yer. L2 noktasında Güneş ve Dünya (ve Ay da) her zaman uzayın tek bir tarafındadır ve Webb’in teleskop optiklerini ve araçlarını sürekli olarak gölgede tutmasına izin verir. Bu durum kızılötesi hassasiyet için soğumalarına, ancak yine de gözlemler için herhangi bir anda gökyüzünün neredeyse yarısına erişmelerine olanak tanır. Zaman içinde gökyüzündeki herhangi bir noktayı görmek, Güneş’in etrafında daha uzağa seyahat etmek ve daha önce Güneş’in “arkasındaki” gökyüzünün daha fazlasını ortaya çıkarmak için sadece birkaç ay beklemeyi gerektiriyor.

Ayrıca Dünya, L2’ye Webb’i ısıtmamasına yetecek kadar uzaktadır; yaklaşık 1.5 milyon km. L2 yerçekimi dengesinin olduğu bir yer olduğu için, Webb’in orada bir yörüngeyi sürdürmesi kolay olacak. L2’nin etrafında dönmenin tam olarak L2’de durmaktan daha basit, daha kolay ve daha verimli olduğunu unutmayın. Ayrıca, tam olarak L2’de olmak yerine onun yörüngesinde dönmek, Webb’in termal kararlılığı ve güç üretimi için gerekli olan Güneş’in Dünya tarafından tutulmamasını sağlar. Yani Webb Güneş’i enerji sağlayabilmek için daima görebilecek.

Webb’in L2 etrafındaki yörüngesinin boyutu, Ay’ın Dünya çevresindeki yörüngesinden (ort. 384,400 km) daha büyüktür. L2, Derin Uzay Ağı aracılığıyla Dünya’daki Görev Operasyonları Merkezi ile sürekli teması sürdürmek için uygundur. WMAP, Herschel ve Planck gibi diğer uzay tabanlı gözlemevleri de aynı nedenlerle Güneş-Dünya L2 noktasının yörüngesinde dönüyorlar.

Halo yörünge

James Webb’in yörüngesi

Lagrange 1, 2 ve 3 noktaları etrafında kalmak için hâle (halo) yörüngesi kullanılıyor. Hâle periyodik ve üç boyutlu bir yörüngedir.

Bir cismi bu yörüngeye sokmak nispeten kolay. Ancak James Webb’in kırılgan mimarisi işleri bir parça zorlaştırdı. Bir topu tüm gücünüzle dik biçimde havaya fırlattığınızda; yerçekimi sebebiyle yol boyunca yavaşlayıp tepe noktasında hızı 0’a inecektir. Webb’de L2 noktasına doğru ilerlerken hızı zamanla düştü. Eğer Ariane 5 roketi ile fırlatılan teleskoba başlangıçta az da olsa fazladan enerji verilseydi, L2 noktasını pas geçerdi. Teleskobun böyle bir durumda yavaşlaması gerekirdi ki yavaşlama manevrası için de 180 derece dönmesi gerekecekti. Bu durum Webb’in hassas enstrümanlarının Güneş’e çevrilmesi demek olduğundan imkansız bir seçenekti. Bu sepeble Ariane ile teleskoba tam olarak gerekli hızın (enerjinin) verilmesi gerekiyordu.

kaynak: webb.nasa.gov | solarsystem.nasa.gov | blogs.nasa.gov/webb/ |

James Webb Uzay Teleskobu ne zaman fırlatılacak?

James Webb uzay teleskobu NASA’nın Hubble’ın yerine geçireceği yeni nesil uzay teleskobudur. Teleskobun karmaşık sistemlerinin testleri ve montajda yaşanan zorluklar nedeniyle fırlatma defalarca kez ertelendi. Ve nihayet en gelişmiş uzay teleskobu fırlatma rampasında, büyük günü bekliyor: 25 Aralık 2021, 15:20 (TSİ).

James Webb Uzay Teleskobu‘nun (JWST) inşası oldukça kapsamlı ve pahalı bir proje. Pek çok zorluğu olan James Webb’in fırlatması bu nedenle defalarca kez ertelendi.

Décollage plan large, le 29/09/2017.

fırlatma için hangi roket kullanılacak?

Teleskobun fırlatması için Avrupalı ortakların bir katkısı olarak Ariane 5 roketi kullanılacak.

James Webb kaybedilmesi göze alınamayacak kadar değerli. Böyle uzun süren, yüksek maliyetli bir projede gerçekten çok güvenilir bir roket sisteminin kullanılması gerekiyor. Ariane 5’e Dünya’nın en güvenilir roketi gözüyle bakılıyor. Ard arda 80 fırlatma boyunca hiç fire vermedi.

James Webb teleskobu hakkında daha detaylı bilgi almak için tıklayınız

fırlatma nereden gerçekleşecek?

Fırlatma noktası Arianespace’in Avrupa Uzaylimanı ELA-3 kompleksi. Fransız Guenası’nın Kourou kentine yakın. Güney Amerika’da bulunan Fransız Guenası ekvator çizgisine oldukça yakın. Dünya’nın dönüş hızı ekvatorda en yüksek (1670 km/saat) seviyede olduğu için, kazanılan ekstra hız fırlatmayı daha kolay hale getiriyor.

kaynak: jwst.nasa.gov |

Doğu Anadolu Gözlemevi (DAG)

Doğu Anadolu Gözlemevi (DAG) tamamlandığında Türkiye’nin en gelişmiş teleskobuna sahip gözlemevi olacak. Türkiye’nin son yıllardaki temel bilimler alanındaki en büyük projesi olan DAG faaliyete geçtiğinde Türkiye astronomisine ivme kazandıracak. Erzurum’un Palandöken’e komşu Konaklı’daki Karakaya Tepeleri’nin zirvesinde konuşlanan gözlemevinin ilk ışığını alacağı tarih 2021 yılı olarak düşünülüyor.

3170 metre rakıma kurulan DAG Dünya’nın en yüksekteki üçüncü gözlemevi ünvanını alacak ve optik ile kızıl ötesi bölgede gözlem yapılabilecek.[1] Gözlemevinin yapımı halen sürmekte. İklim koşullarından ötürü yılda sadece 5 ay çalışılabilen bölgedeki inşaatın büyük kısmı ise tamamlanmış durumda. Binası tamamlanınca şu an testleri devam eden teleskop İtalya’daki fabrikadan parçalar halinde gözlemevine getirilecek. Almanya’da üretilen aynanın cila işi de Belçika’da devam ediyor.

DAG’ın konuşlandığı tepeden görünüm.

Doğu Anadolu Gözlemevi’nin 4 metre ayna çapına sahip teleskobu Türkiye’nin en büyük teleskobu ünvanını alacak. Şu an ülkemizdeki en büyük teleskop TÜBİTAK Ulusal Gözlemevi bünyesindeki 1.5 metre çaplı RTT150 teleskobudur. Bu teleskoba Ruslar da ortak. Bu nedenle gözlem süresini tamamen biz kullanamıyoruz.[2] 

Türkiye’nin en büyük teleskobu kendi sınıfında Dünya’nın en iyisi

Türkiye’nin astronomi, astrofizik ve uzay bilimleri alanındaki en büyük projesi ve yatırımı olan DAG’ın 4 metrelik teleskobu, günümüzde gelişmiş gözlemevleri için yapılan onlarca metrelik teleskoplarını düşününce epey küçük kalıyor. 15 sene önce bu çapta teleskoplar orta boydu bugün ise küçük-orta boy sınıfına giriyorlar.

Yine de DAG teleskobu sahip olduğu gelişmiş teknolojiler sayesinde kendi çapındaki teleskoplardan çok daha üstün olacak. Teleskobun optik ve elektronik donanımlarının en yeni teknolojileri içermesi konusunda uğraşılıyor. Bu teknolojilerden bir tanesi, bugün üretilen büyük gözlemevlerinin sahip olduğu adaptif optik (uyarlanabilir optik / AO) sistemi. AO sayesinde teleskop atmosferin görüşü bozucu etkisinden çok daha az etkilenecek ve daha net görüntüler sunacak.

Yıldızların ışığı bize çok ince bir ışın demeti biçiminde geldiğinden atmosferdeki türbülanslar gelen görüntünün sürekli hareket etmesine ve deforme olmasına neden olur. Bu yüzden de yıldızlar göz kırpıyormuş gibi görülür. Bu durum astronomi gözlemlerini olumsuz etkiler.

DAG’ın bir diğer önemli avantajı ise bulunduğu konum. Bu enlem ve boylam yakınlarında bu boyutta bir başka teleskop yok. Diğer büyük teleskoplar 8-12 saat uzaklıktalar. Bu özelliğiyle DAG kuzey yarı küredeki boylam boşluğunu doldurmuş oluyor.

Doğu Anadolu Gözlemevi ile burdaki teleskobun ayrı şeyler olduğunu belirtmekte fayda var çünkü çok karışabilecek bir konu. DAG’da şimdilik tek bir teleskop olacak ancak ileriki yıllarda buraya farklı teleskoplar eklenmesi mümkün.

DAG’ın teleskobu İtalya’daki fabrikada test aşamasında.

Doğu Anadolu Gözlemevi optik özellikleri

Gece gökyüzünde parıldayan yıldızları seyretmek bizim gibi sıradan insanlar için romantik bir deneyim olabilir belki. Astronomlar ise bu durumdan hiç memnun olmazlar. Gezegenimizin yaşamla dolu olmasını sağlayan atmosferi (özellikle su buharı) gökbilim çalışmaları için aşılması gereken bir engele dönüşür. Atmosferdeki hava hareketleri, türbülanslar gökcisimlerinden gelen ışınlar üzerinde bozucu etki yaratırlar. Bu nedenle yerdeki teleskopların teorideki büyütme gücü ve çözünürlüğüne, bu bozucu etki sebebiyle pratikte ulaşılamaz.

Atmosferin etkilerinden kurtulmak için teleskopları atmosferin dışına çıkarma fikri ilk olarak 1923’te düşünüldü. Hubble Uzay Teleskobu ise 1990’da uzaya çıktı. Hubble gerçekten de uzaydaki bir teleskobun yerdekilere göre avantajlı olduğunu kanıtladı.

Yeryüzünde konuşlu Subaru teleskobu ile Hubble Uzay Teleskobu’nun görüntü kalitelerinin karşılaştırması. Daha küçük bir aynaya sahip olsa da Hubble’ın üstünlüğü bariz.

Adaptif (uyarlamalı) optik

Bugün geldiğimiz noktada ise adaptif optik teknolojisi artık pahalı uzay teleskoplarına gerek duymadan yeryüzünde atmosfer etkilerininden doğan bozulmaları düzelterek gözlem yapmanın kapısını açtı.

Bu sistemin çalışma prensibini çok kabaca şu şekilde açıklayabiliriz:

Atmosferdeki bozulma etkisi olmadan ne şekilde gözüktüğü bilinen bir cisim üzerindeki bozulmayı tespit edebilirseniz, teleskop aynası yüzeyinde atmosfer bozulmasını nötürleyecek biçimde değişiklik yapma şansınız oluyor. Uyarlamalı terimi de buradan gelmekte. Bu sistemde deforme edilebilir bir teleskop aynası  var ve atmosferdeki türbülansın tersi yönde bükülüyor.

DAG’da kullanılacak adaptif optik sistem tamamen Türkiye’de tasarlanıp Türkiye’de üretiliyor. Bu maliyet ve teknolojik açısından büyük fayda sağlıyor. Aşağıda AO teknolojisinin marifeti görülmekte. Solda yeryüzündeki bir teleskoptan alınan görüntü var. Ortadaki ise aynı teleskopta AO sistemi çalıştırıldığında alınan görüntü. Çok daha keskin ve detaylı görülüyor öyle değil mi? Son olarak da Hubble’dan alınan görüntüyü görüyoruz.

Yerde konuşlu bir teleskoptan uyarlamalı optik sistem kullaılmadan ve kullanılarak elde edilen Neptün görüntüsü ile Neptün’ün Hubble görüntüsü. ESO/P. Weilbacher (AIP)

Hubble’dan daha iyi

Doğu Anadolu Gözlemevi teleskobunun tüm optik tasarımları Türkiye’deki mühendisler tarafından yapıldı. Teleskobun optik teknolojisinin içinde adaptif optik de var. Bu sayede DAG’da adeta atmosfer yokmuş gibi gözlem yapılabilecek. Elbette sistemin ne kadar verimli olacağı çalışmaya başladığında belli olacak ancak bilim insanlarımız Hubble Uzay Teleskobu’nun çözünürlüğüne ulaşabileceğini ve hatta 5-6 katı kadar yüksek çözünürlüğe ulaşılabileceğini umuyorlar[4].

Doğu Anadolu Gözlemevi dahilindeki 4 metrelik teleskobun şeması. Optik algılayıcılar, adaptif optik sistemi ve diğer sistemler yanlardaki çıkıntılarda bulunacak.

Kızıl ötesi

DAG görünür ışığın yanı sıra kızıl ötesi dalga boylarına odaklanacak. Böylece Türkiye ilk kez kızılötesini gözlemleme şansına kavuşacak.

NASA’nın Dünya’dan 1.5 milyon km uzağa yerleştireceği James Webb Uzay Teleskobu da kızıl ötesi astronomiyi amaçlıyor. Bu devasa yatırımdan kızıl ötesi astronominin önemi anlaşılabilir. Kızılötesi sayesinde yoğun gaz ve toz barındıran galaksi, süpernova, yıldız ve gezegen oluşumu bölgeleri gibi alanlar çok daha detaylı biçimde incelenebiliyor[6].

Ayna kaplama ünitesi

Teleskop aynalarının kaplamaları zamanla eskidiğinden belli periyotlarla yeniden kaplanmaları gerekir. Mesela benim teleskobumun alüminyum kaplaması eskiyip verimi çok düştüğünde, tekrar kaplatmak için Maltepe’den İkitelli’ye gitmiştim. 4 metrelik teleskobu ülkeler arası taşımak bundan çok daha zahmetli ve masraflı olur. Öyle her yerde de kaplatamıyorsunuz: Almanya’da üretilen teleskobun aynası kaplama için Rusya’ya taşındı.

İlk kaplama Rusya’da yapılacak ama DAG bünyesinde yeniden kaplama için Avrupa’daki en büyük ayna kaplama ünitesi kurulacak. Ayna kaplaması eskidiğinde, ayna sökülüp sadece özel bir kanaldan geçirilerek bu ayna kaplama sistemine varacak. Bu tasarımın Dünya’da başka bir benzeri yok.

2021 yılında devreye girmesi planlanan Ayna Kaplama Sistemi sadece DAG için değil Türkiye ve bölgedeki diğer teleskoplar için de hizmet verebilecek.

Doğu Anadolu Gözlemevi bilimsel hedefleri

DAG’nin bilimsel hedefleri şu kategorilerde olacak:
– yüksek kırmızıya kaymalı gökadaların gözlenmesi
– yıldız oluşumu
– güneş sistemi küçük cisim çalışmaları
– gökada çalışmaları
– evrenbilim (kozmoloji) çalışmaları
– gezegen çalışmaları

DAG’ın teleskobunu kullanmak isteyen astronomların projeleri kabul edildikten sonra hangi proje için ne zaman gözlem yapacağına teleskop kendi karar verecek. Hava koşullarını sürekli gözlemleyen teleskop hedeflenen gözlemlerden o an için en uygununu seçerek gerekli gözlemi yapacak.

Bu neden önemli? Bu iş geleneksel olarak astronomların teleskopları belirli gün veya saat için kendisine ayırtması şeklinde yürütülüyor. Eğer teleskobu kendiniz için ayırttığınızda hava durumu gözlem için uygun değilse zaman kaybı yaşıyorsunuz. Bu açıdan DAG geleneksel gözlemevlerine göre çok daha verimli biçimde kullanılacak.

DAG teleskobunun EIE şirketince üretilen kundağı

DAG Projesine dahil olan kurumlar

250 milyon ₺ bütçeye ile Türkiye’nin temel bilimler alanındaki en büyük projesi kabul edilen Doğu Anadolu Gözlemevi projesi, T.C. Strateji ve Bütçe Başkanlığı ile Atatürk Üniversitesi desteğiyle yürütülüyor. Çeşitli alt projeler için de ODTÜ, İstanbul Üniversitesi, FMV Işık Üniversitesi çalışmalara dahil olmuş durumda. Teleskop optik tasarımı ATASAM ve OPAM (FMV Işık Üniv., Optomekatronik Araş. ve Uyg. Merkezi), Adaptif Optik (AO) ve Derotator (DR) sistemlerinin tasarımı da OPAM tarafından yapıldı.

Kaynaklar:

  1. Doğu Anadolu Gözlemevi Projesi //dag-tr.org/Proje/Proje
  2. Doğu Anadolu Gözlemevi Proje Kapsamında Sıkça Sorulan Sorular //dag-tr.org/Proje/FAQ
  3. TAD, Gökyüzü Eylül-Ekim 2016, sayı 68 //www.astronomi.org/wp-content/files/webfiles/ebulten/GOKYUZU_Eylul_Ekim_2016_Sayi68.pdf
  4. Gündem Özel CNN Türk, 26 Şubat 2017 [//www.youtube.com/watch?v=dB4_58pN03U]
  5. TÜBİTAK Ulusal Gözlemevi RTT150 teleskobu sayfası //tug.tubitak.gov.tr/tr/teleskoplar/rtt150
  6. Gökgünce – Doğu Anadolu Gözlemevi
  7. Comparison of Imaging from the Ground and Space //hubblesite.org/image/1461/news/14-deep-fields
  8. Doç. Dr. Cahit Yeşilyaprak’ın röportajı //havadis.de/dogu-anadolu-gozlemevinin-buyuk-bolumu-tamamlandi/
  9. Hubble //www.nasa.gov/mission_pages/hubble/observatory
  10. Telescope and Researcher Potential of Turkey for Collaboration in CV Studies //adsabs.harvard.edu/full/2013IAUS..281..126S
  11. DAG Dome //www.eie.it/en/progetti/dag-dome
  12. DAG Telescope //www.eie.it/en/progetti/dag-telescope
  13. Adaptive optics lifts Earth’s atmospheric veil to reveal a sharper cosmos //newatlas.com/eso-vlt-adaptive-optics-first-light-neptune/55517/
  14. TAD Kandilli Astrofizik Günleri “Doğu Anadolu Gözlemevi ve Astrofiziğe Kazandıracakları” sunumu //www.youtube.com/watch?v=KpMZC6xOa5s
  15. Herkese Bilim ve Teknoloji’de Doç. Dr. Cahit Yeşilyaprak’ın röportajı //www.herkesebilimteknoloji.com/slider/dogu-anadolu-gozlemevi-dag-ve-turkiyede-astronomi-meraki-cahit-yesilyaprak-ile-konustuk

ilk yayın: 25 Aralık 2019